
Laminar-turbulent transition
for low Reynolds number

mixed convection in a
uniformly heated vertical tube

A. Behzadmehr, N. Galanis and A. Laneville
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Abstract Upward mixed convection flow of air in a uniformly heated vertical tube was studied
numerically using the three-dimensional elliptic conservation equations and the Launder and
Sharma low Reynolds number k–1 turbulence model. For Re ¼ 1; 000 the fully developed flow field
undergoes two transitions as the Grashof number increases: thus, this flow field is laminar for
Gr , 8 £ 106, turbulent for 8£106,Gr , 5 £ 107 and again laminar for Gr.5 £ 107. In the
entry region, turbulent kinetic energy decays monotonically for Gr#3 £ 106 and Gr$7.1 £ 107.
For Gr between these two values it initially increases from the imposed inlet condition and then
decreases towards its calculated fully developed value. The mean velocity profiles as well as the axial
evolution of the skin friction coefficient are presented for representative values of Gr.

The current issue and full text archive of this journal is available at

http://www.emeraldinsight.com/0961-5539.htm

Nomenclature
D ¼ Internal tube diameter
Cf ¼ Skin friction coefficient (¼2tw/rU0

2)
Cp ¼ Specific heat
G ¼ Turbulent production
g ¼ Acceleration of gravity
Gr ¼ Grashof number (¼gbD 4qw/ln 2)
I ¼ Turbulent intensity
k ¼ Turbulent kinetic energy
P ¼ Time mean pressure
Pr ¼ Prandtl number(¼mCp/l )
qw ¼ Uniform heat flux at the solid–fluid

interface
r ¼ Radial coordinate
Re ¼ Reynolds number (¼U0D/n )
T; t ¼ Time mean and fluctuating

temperature

U ; u ¼ Time mean and fluctuating velocity
Z ¼ Axial coordinate

Greek letters
b ¼ Volumetric expansion coefficient
1 ¼ Dissipation of turbulent kinetic energy
u ¼ Tangential coordinate
l ¼ Thermal conductivity
m ¼ Dynamic viscosity
n ¼ Kinematic viscosity
r ¼ Density
t ¼ Shear stress

Subscripts
B ¼ Bulk
b ¼ Buoyancy
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Introduction
Mixed convection in ducts occurs in many industrial installations such as
pressurized water reactors, supercritical boilers, solar energy collectors and
shell and tube heat exchangers. Therefore, it is being studied extensively.
Jackson et al. (1989) presented a comprehensive review of experimental and
theoretical studies on mixed convection in vertical tubes published before 1989.
Several more recent publications are referred to in the present article.

Numerical studies of mixed convection have been conducted by assuming
that the flow field is laminar when Re is low or turbulent when Re is high.
Thus, Zeldin and Schmidt (1972), Wang et al. (1994) and Ouzzane and Galanis
(1999) used the laminar equations for Re , 1500 while Cotton and Jackson
(1990), Satake et al. (2000) and Tanaka et al. (1987) used the turbulent equations
for Re . 2; 000: Nevertheless, experimental evidence compiled by Metais and
Eckert (1964) indicates that mixed convection can be turbulent for Reynolds
numbers as low as 1,000. The structure of such very low Reynolds number
mixed convection flows has not been studied systematically.

Furthermore, a flow field, which is laminar at the tube entrance, may become
unstable and eventually turbulent further downstream or, as demonstrated by
both numerical and experimental studies (Hall and Jackson, 1969; Satake et al.,
2000; Tanaka et al., 1987) a turbulent flow can become laminar under the
stabilizing effect of the buoyancy force. It is, therefore, evident that the laminar
model used for the numerical prediction of the corresponding hydrodynamic
and thermal fields is of limited practical interest since it can only handle the
simplest flow conditions.

In view of these observations, it is preferable to use turbulent models with a
proven capability of predicting laminar flow fields for the analysis of
convection heat transfer. The low Reynolds number k-1 models are among the
primary candidates for such analyses. Indeed, Jones and Launder (1972) have
shown that in some cases turbulent solutions for such a model do not exist for
accelerating flows. They state, that “if one starts the predictions with an
initially turbulent boundary layer and then applies the acceleration, the
turbulence gradually decays away and the mean velocity profile collapses to
that appropriate to laminar flow”. Cotton and Jackson (1990) used a slightly
different version of this k-1 model to study the heat developed due to flow in
tubes. Their numerical results were calculated with Re ¼ 5; 000; Pr ¼ 0:7 and
4:4 £ 105 , Gr , 9:0 £ 108: They are in close agreement with experimental
heat transfer data and with flow profile measurements for air. These authors
established that the mean flow equations and the turbulence model must be

c ¼ Centerline
i; j ¼ Tensor index
k ¼ Hydrodynamic turbulence production
w ¼ Wall

0 ¼ Inlet condition
r ¼ Radial direction
z ¼ Axial direction
u ¼ Tangential direction
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cast in a developing flow framework in order to capture the complex behavior
occurring in ascending heated flows.

In view of this situation, our research on mixed convection in tubes which
has until now focused on laminar flow (Ouzzane and Galanis, 1999; Orfi et al.,
1999; Nesreddine et al., 1998) is being extended to include turbulent flows. In
this paper, the Launder and Sharma (1974) low Reynolds number k-1 model is
used to study ascending mixed convection with uniform heating for Pr ¼ 0:7;
Re ¼ 1; 000 and a wide range of Grashof numbers. Specifically, the aim of this
study is to establish the transition conditions between laminar and turbulent
flows, and to obtain a comprehensive description of the axial evolution of the
hydrodynamic field. Similar numerical investigations of the transitional
features of heated flows have dealt with forced convection and Reynolds
numbers higher than 2,000 (Ezato et al., 1999; Torii and Wen-Jei, 2000). As far
as we can ascertain, this work constitutes the first systematic numerical study
of the flow regime evolution for mixed convection with Re , 2; 000.

Mathematical formulation and numerical procedure
We consider air flowing upwards in a long vertical tube with uniform heating
at the fluid–solid interface. The properties of the air are assumed constant
except for the density in the body force which varies linearly with temperature
(Boussinesq’s hypothesis). Dissipation and pressure work are neglected. With
these assumptions the dimensional conservation equations for steady state
mean conditions are as follows:
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In cylindrical coordinates:

X1 ¼ r; X2 ¼ u; X3 ¼ Z ð4aÞ

For Z positive in the flow direction,

g1 ¼ g2 ¼ 0 and g3 ¼ 2g: ð4bÞ

Turbulence is modeled with the Launder and Sharma (1974) low Reynolds
number k-1 model which has been shown (Carr et al., 1973) to give accurate
predictions for low and intermediate Reynolds numbers and for boundary
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layers with adverse pressure gradients. It has also been successfully used
(Cotton and Jackson, 1990) to model turbulent mixed convection for Re $ 2; 100
and is expressed by the following relations for the turbulent kinetic energy and
turbulent energy dissipation, respectively:
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c1 ¼ 1:44; c2 ¼ 1:92; cm ¼ 0:09; f 1 ¼ 1; Prt ¼ 0:9; sk ¼ 1; s1 ¼ 1:3
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It should be noted that no assumption of symmetry is introduced, the field
variables are then considered to vary with all three space coordinates. These
equations have been presented in cylindrical coordinates by Cotton and
Jackson (1990) with the boundary layer approximation and by Tanaka et al.
(1987) for fully developed flows. The model used in the present study does not
use either of these simplifications.

The boundary conditions are as follows:

. At the tube entrance ðZ ¼ 0Þ:

Uz ¼ U 0 Uu ¼ Ur ¼ 0 T ¼ T0 I ¼ I 0 ð8aÞ

Since the adopted model incorporates the assumption of turbulence isotropy,
the corresponding turbulent kinetic energy is:

k0 ¼ 1:5ðI 0U 0Þ
2 ð8bÞ

. At the tube outlet (Z ¼ 101D):

All axial derivatives are zero ð9Þ
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. At the fluid–solid interface ðr ¼ D=2Þ:

Ur ¼ Uu ¼ UZ ¼ 0; k ¼ 1 ¼ 0; qw ¼ 2l
›T

›r
ð10Þ

This set of coupled non-linear differential equations was discretized with
the control volume technique. For the convective and diffusive terms a
second order upwind method was used while the SIMPLEC procedure was
introduced for the velocity–pressure coupling. The relative convergence
criterion is

Rf

iteration N

R
f

iteration M

, d ð11Þ

For continuity Rw ¼
P

j rate of mass creation in cell j and d ¼ 1023: Otherwise,
the scaled residual R w is defined as

Rw ¼
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X
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X
anbfnb þ b 2 apfp
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 ð12Þ

where nb indicates the neighbors of cell p. For velocities w ¼ Ui and d ¼ 1023;
for turbulent kinetic energy w ¼ k and d ¼ 1023; for turbulent dissipation
w ¼ 1 and d ¼ 1023 while for energy w ¼ T and d ¼ 1026:

The discretization grid is uniform in the circumferential direction and non-
uniform in the other two directions. It is finer near the tube entrance and near
the wall where the velocity and temperature gradients are large. Several
different grid distributions have been tested to ensure that the calculated
results are grid independent. Although none of these tests showed any
variation in the circumferential direction, we retained the three-dimensional
formulation for future considerations. The selected grid for the present
calculations consisted of 220, 48 and 8 nodes, respectively, in the axial, radial
and circumferential directions. Results with (440, 96, 8) nodes differed by 0.5
percent or less for velocity components, temperature, turbulent kinetic energy
and turbulent dissipation.

Validation and results
In this section, we present results calculated with the previously presented
model, which demonstrate its versatility and illustrate the effect of the Grashof
number on the flow regime. The Prandtl number was held constant at 0.7
throughout this study.
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a. Validation
In order to demonstrate the validity and precision of the model and the
computer code, calculated velocity and temperature profiles have been
compared with corresponding experimental results from the literature. Figure 1
shows such a comparison with measurements by Carr et al. (1973)
corresponding to fully developed turbulent flow. The calculated results were
obtained with I 0 ¼ 8 percent according to an appropriate empirical relation
(Karasu, 1995). The agreement between numerical and experimental values for
both the temperature and velocity profiles is very good.

Figure 2 shows similar comparisons with measurements by Zeldin and
Schmidt (1972) for developing laminar flow in a vertical isothermal tube.
Calculations with I 0 ¼ 8 percent and I 0 ¼ 0:8 percent resulted in identical
results for the velocity and temperature profiles at the axial positions identified
in Figure 2. A detailed comparison of the calculated results indicates that for
such laminar flow conditions the influence of I0 on the mean axial velocity and
temperature is restricted to the immediate vicinity of the tube entrance. Once
again the agreement between numerical and experimental values is very good
except for the temperature profile near the tube entrance ðZ=Pe ¼ 0:01496 or
Z=D ø 4Þ: However, as explained by Zeldin and Schmidt (1972) the measured
temperatures close to the tube entrance were influenced by upstream
conduction through the walls of the experimental setup. The numerical
predictions of their laminar model for the temperature profile at Z=D ø 4 are
very close to the numerical results in Figure 2.

The results of these two figures demonstrate the validity of the physical
model and the numerical procedure for the calculation of both turbulent and
laminar flows. Furthermore, they show that in the case of laminar flows the
mean velocity and temperature profiles are essentially independent of the
upstream turbulent intensity.

b. Axial evolution of the hydrodynamic field
Figure 3 shows the axial evolution of the turbulent kinetic energy for the
laminar conditions specified in Figure 2. As the fluid moves downstream,
k decreases for all radial positions. The decay of turbulent kinetic energy
occurs earlier when the imposed value of I0 is smaller but the value of k is
negligible after a length of approximately 30 D even for the admittedly
excessive value of I 0 ¼ 8 percent: As mentioned earlier, for such laminar
flow conditions the value of I0 does not influence the distribution of U and T.
However, convergence is quicker when I0 is smaller and it is therefore
preferable to use low values of this parameter when laminar flow conditions are
suggested by charts such as those by Metais and Eckert (1964). The results of
Figures 2 and 3 are consistent with the remark by Jones and Launder (1972)
quoted in the introduction.
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Figure 1.
Validation for turbulent

flow conditions
(Pr ¼ 0:71; Re ¼ 5; 000;

Gr ¼ 2:22 £ 107;
I 0 ¼ 8 percent)
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Figure 2.
Validation for laminar
flow conditions
(Pr ¼ 0:71; Re ¼ 379:8;
Grt ¼ 12; 628;
I 0 ¼ 8 percent)
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The Reynolds number and the entrance turbulent intensity were then fixed at
1,000 and 0.1 percent, respectively, in order to study the effect of the Grashof
number on the flow characteristics.

Figure 4 shows the axial evolution of the centerline mean axial velocity Uc

for four different Grashof numbers. At the inlet ðZ ¼ 0Þ U c ¼ U 0 for all values
of Gr. Immediately afterwards, Uc increases as the boundary layer builds up
and pushes the fluid towards the tube axis. This effect is counterbalanced by
the upward acceleration of the fluid in the vicinity of the wall induced by
buoyancy. Thus, eventually Uc reaches a maximum. The position of this
maximum approaches the tube entrance as the Grashof number increases.
Beyond this position, the fluid velocity in the vicinity of the wall continues to
increase and Uc decreases to satisfy continuity. Further downstream however,
the behavior of Uc is more complicated. For the lowest Grashof number,
Gr ¼ 7:1 £ 105; it eventually reaches a positive constant value approximately
equal to U0. For Gr ¼ 4:5 £ 106 it becomes negative, goes through a local
minimum and reaches a negative constant value indicating the existence of
flow reversal which persists everywhere beyond Z ø 12D: For Gr ¼ 107 the
evolution of Uc is quite different. After the maximum value caused by the
boundary layer buildup and the subsequent rapid decrease, it reaches a
negative value at approximately Z ¼ 10D and then increases towards a second
positive local maximum. Flow reversal in this case is therefore very localized.
After the second local maximum and a rapidly damped oscillation it reaches a

Figure 3.
Evolution of turbulent

kinetic energy for
laminar flow conditions
ðPr ¼ 0:71; Re ¼ 379:8;

Grt ¼ 12; 628;
I 0 ¼ 8 percentÞ

Convection in a
uniformly heated

vertical tube

847



positive constant value approximately equal to 0.85U0. Finally, for the highest
Grashof number, Gr ¼ 7:1 £ 107; the maximum induced by the boundary layer
growth is hardly visible. Uc decreases rapidly towards zero, increases slightly
and reaches a constant positive value, which is less than 0.05U0.

It is important to note that the relation between Gr and the constant value of
Uc, whose existence has been established by the results of Figure 4, is not
monotonic. Indeed the values of the ratio Uc/U0 are 1.0, 20.2, 0.85 and 0.03 for
Gr equal to 7:1 £ 105; 4:5 £ 106; 107 and 7:1 £ 107; respectively. In order to put
into perspective and validate this peculiar relation, it is first necessary to
establish the turbulent characteristics of each of these four flow fields.

Figure 5 shows the axial evolution of the centerline turbulent kinetic energy
for the previously specified four Grashof numbers. Radial distributions of
k at different axial positions have also been obtained but are not shown here
because of space limitations. In the immediate vicinity of the tube entrance
ðZ=D # 2Þ kc is identical for all four Grashof numbers (note the difference
in scales between the two parts of the figure). Beyond this axial position
the evolution of kc depends very strongly on the Grashof number. For the lowest
Grashof number, Gr ¼ 7:1 £ 105; turbulence is damped monotonically and
laminar conditions prevail in the downstream part of the tube. For Gr ¼
4:5 £ 106; Figure 5 shows a growth of turbulence with a peak value at
approximately Z ¼ 30D: Once again the flow field in the downstream part of
the tube is laminar. As Gr increases further, the flow becomes more unstable

Figure 4.
Evolution of the
centerline mean axial
velocity ðPr ¼ 0:7; Re ¼
1; 000; I 0 ¼ 0:1 percentÞ
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and for Gr ¼ 107 it is turbulent everywhere beyond Z=D ø 10 due to the
simultaneous increase of buoyancy turbulent production and of turbulent
diffusion. Finally, for the highest value, Gr ¼ 7:1 £ 107; kc is uniformly zero
beyond Z=D ø 5 due to the laminarization effect of the buoyancy force already
reported in the literature (Hall and Jackson, 1969; Satake et al., 2000; Tanaka
et al., 1987). The results of Figure 5 shows that, for Re ¼ 1000; the flow field
undergoes two transitions as the Grashof number increases: for low Grashof
numbers the flow is laminar everywhere, for intermediate Grashof numbers
(between approximately 106 and 5 £ 107) it is turbulent in at least certain parts
of the tube while for Gr ¼ 7:1 £ 107 it is again laminar. Figure 5 also shows
that in the downstream part of the tube kc is independent of the axial position,
similar to Uc.

Figure 6a shows the axial evolution of the mean velocity profile for Gr ¼ 107

in the entry region where it undergoes significant changes. It does not include
the very short region where Uc increases (cf. Figure 4) due to the boundary
layer buildup. It does show, however, that between Z=D ¼ 6 and Z=D ¼ 10 the
velocity near the wall is accelerated due to the influence of buoyancy while the
corresponding velocity near the tube axis decreases. This behavior is typical
for laminar flows (Wang et al., 1994; Nesreddine et al., 1998) and indeed, as
shown in Figure 4, the flow field under consideration is laminar in this region.

Figure 5.
Evolution of the

centerline turbulent
kinetic energy

ðPr ¼ 0:7; Re ¼ 1; 000;
I 0 ¼ 0:1 percentÞ
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Figure 6.
Axial velocity profiles
ðPr ¼ 0:7; Re ¼ 1; 000;
I 0 ¼ 0:1 percentÞ:
(a) Evolution for
Gr ¼ 107 and
(b) hydrodynamically
developed profiles for
different Gr
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For Z=D , 10 significant velocity variations occur mainly in the vicinity of the
wall where the predominating molecular viscosity and the buoyancy induced
acceleration counterbalance turbulence production. However, by Z=D ¼ 10 an
important velocity gradient occurs further away from the wall and gives rise to
significant turbulence production and diffusion. These phenomena explain the
corresponding sharp increase of kc shown in Figure 5. The presence of this
intense turbulence promotes radial momentum transfer and the velocity profile
becomes more uniform as the fluid moves further downstream. Therefore, the
velocity gradient decreases, turbulence production and diffusion are reduced
and by Z=D ¼ 20 the velocity profile reaches a form which does not vary much
in either the axial or the radial directions. Beyond this point, equilibrium is
attained between turbulence production and destruction, which is illustrated by
the constant value of kc shown in Figure 5.

The results of Figures 4 and 5 (axially independent values of Uc and kc in the
downstream region of the tube) as well as those of Figure 6a (small changes of
the velocity profile between Z=D ¼ 17:5 and Z=D ¼ 20) suggest the existence
of a hydrodynamically developed region. This has indeed been confirmed by
comparing the velocity profiles for a particular Grashof number at different
axial cross-sections beyond the positions where Uc and kc become constant.
Figure 6b shows these fully developed axial velocity profiles. Based on the
previous observations, the developed profile for Gr ¼ 107 is turbulent while
those corresponding to the other three Grashof numbers are laminar. The three
laminar profiles are in good qualitative agreement with the analytical solution
for fully developed laminar mixed convection in a vertical uniformly heated
tube (Hallman, 1956). For low Grashof numbers the velocity is positive
everywhere and its maximum value occurs away from the tube axis. For higher
Grashof numbers the maximum velocity increases and moves further away
from the axis while the velocity at the centerline decreases and eventually
becomes negative (under these conditions, the velocity is zero at an
intermediate point between the axis and the wall). Finally, for very high
Grashof numbers the region of negative velocities occurs away from the axis
(under these conditions, the velocity is zero at two intermediate points between
the axis and the wall). Furthermore, the relation between Uc and Gr suggested
by our numerical results for the three laminar cases is as predicted by Hallman:
as Gr increases Uc decreases, becomes negative and then starts increasing
towards positive values. It should be noted that the first two types of laminar
profiles shown in Figure 6b by the results corresponding to the two lower
Grashof values have also been predicted by laminar numerical models (Zeldin
and Schmidt, 1972; Wang et al., 1994; Nesreddine et al., 1998), while the third
type corresponding to Gr ¼ 7 £ 107 has not been obtained numerically by
either laminar or turbulent models as far as we can ascertain. Compared with
these three laminar profiles, the turbulent one corresponding to Gr ¼ 107 is, as
expected, more uniform. Its maximum is the lowest while its value at the
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centerline does not follow the tendency of the other three profiles since the flow
regime is not the same.

Figure 7 shows the evolution of the skin friction coefficient for the
previously defined cases. At Z ¼ 0 the value of Cf is the same for all Grashof
numbers and it decreases initially since natural convection effects do not
become effective immediately at the tube entrance. For the lowest Grashof
number ðGr ¼ 7:1 £ 105Þ; Cf reaches a local minimum at approximately Z=D ¼
5; increases slightly and attains a constant value of approximately 0.03 in the
hydrodynamically developed region. For Gr ¼ 4:5 £ 106; Cf increases after the
entry region, reaches a local maximum and attains a constant value of
approximately 0.07 in the developed region. It is noted that, according to the
previous discussion, the developed flow for these two Grashof numbers is
laminar. For Gr ¼ 107; for which the developed flow is turbulent, we note a
pronounced peak at approximately Z=D ¼ 10 corresponding to the position of
minimum Uc (cf. Figure 4) and steeply increasing kc (cf. Figure 5). In the
developed region, the value of Cf for Gr ¼ 107 is essentially the same as that for
Gr ¼ 4:5 £ 106 despite the fact that the former flow is turbulent while the latter
is laminar (cf. Figure 4). Finally, for Gr ¼ 7:1 £ 107 the values of Cf are much

Figure 7.
Evolution of the
skin friction coefficient
ðPr ¼ 0:7; Re ¼ 1; 000;
I 0 ¼ 0:1 percentÞ
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higher than those for all previous cases despite the fact that beyond
approximately Z=D ¼ 5 this flow field is laminar (cf. Figure 5). It should be
noted that the value of Cf for hydrodynamically developed forced convection is
0.016, i.e. considerably smaller than all the values shown in Figure 7.

Conclusion
The three-dimensional elliptic conservation equations and the Launder and
Sharma low Reynolds number k-1 turbulent model were used to study steady
state, developing, ascending mixed convection of air in a uniformly heated
vertical tube. The adopted formulation has been successfully validated against
experimental results for both laminar and turbulent flow conditions.

A detailed analysis of flow variables calculated for Re ¼ 1; 000 and a wide
range of Grashof numbers has established the existence of fully developed flow
conditions. The corresponding flow regime is laminar for Gr , 8 £ 106;
turbulent for 8 £ 106 , Gr , 5 £ 107 and again laminar for Gr . 5 £ 107: The
existence of a laminar velocity profile with flow reversal away from the axis, in
accordance with the analytical solution for fully developed flow obtained by
Hallman, has been demonstrated numerically.

It has also been shown that for Re ¼ 1; 000 and low or high Grashof numbers
ðGr ¼ 7:1 £ 105 and Gr ¼ 7:1 £ 107Þ the turbulent kinetic energy decays
monotonically as the fluid moves downstream from the tube inlet. This situation
corresponds to the laminarization of turbulent mixed convection reported in
previous studies for Re . 2; 500: On the other hand, for intermediate values of
the Grashof number ðGr ¼ 4:5 £ 106 and Gr ¼ 107Þ; the turbulent kinetic
energy of the flow exhibits a local maximum considerably higher than both the
imposed inlet value and its calculated fully developed value. Therefore, for
such values of Gr turbulence production exceeds turbulence destruction in
some regions of the tube while in others the opposite is true. This result
suggests that a laminar flow entering in a heated tube can become turbulent
and then again laminar under the combined effects of the Reynolds stresses
and the buoyancy force.

These results provide the first systematic description of the flow regime
evolution for mixed convection with a Reynolds number below 2,000.
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thermique sur la convection mixte près de l’entrée d’une conduite inclinée”, Int. J. Thermal
Sciences, Vol. 38, pp. 622-33.

Satake, S.I., Kunugi, T. and Shehata, A.M. (2000), “Direct numerical simulation for laminarization
of turbulent forced gas flows in circular tubes with strong heating”, Int. J. Heat Fluid Flow,
Vol. 21, pp. 526-34.

Tanaka, H., Marugama, S. and Hatano, S. (1987), “Combined forced and natural convection heat
transfer for upward flow in a uniformly heated vertical pipe”, Int. J. Heat Mass Transfer,
Vol. 30 No. 1, pp. 165-74.

Torii, S. and Wen-Jei, Y. (2000), “Thermal-Fluid transport phenomena in strongly heated channel
flows”, Int. J. Num. Methods Heat Fluid Flow, Vol. 10 No. 8, pp. 802-23.

Wang, M., Tsuji, T. and Nagano, Y. (1994), “Mixed convection with flow reversal in the thermal
entrance region of horizontal and vertical pipes”, Int. J. Heat Mass Transfer, Vol. 37,
pp. 2305-19.

Zeldin, B. and Schmidt, F.W. (1972), “Developing flow with combined forced free convectionin an
isothermal vertical tube”, ASME J. Heat Transfer, Vol. 94, pp. 211-23.

HFF
12,7

854


